

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Lanthanide Shift Reagents II: Pr³⁺TTA₃ a “Two-Way” Shift Reagent for the Ring Protons of Benzylic Systems

Shyama P. Sinha^a; S. C. Kong^a

^a Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia

To cite this Article Sinha, Shyama P. and Kong, S. C. (1973) 'Lanthanide Shift Reagents II: Pr³⁺TTA₃ a “Two-Way” Shift Reagent for the Ring Protons of Benzylic Systems', *Spectroscopy Letters*, 6: 7, 423 – 428

To link to this Article: DOI: 10.1080/00387017308065479

URL: <http://dx.doi.org/10.1080/00387017308065479>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

LANTHANIDE SHIFT REAGENTS II: $\text{Pr}(\text{TTA})_3$ A "TWO - WAY" SHIFT REAGENT
FOR THE RING PROTONS OF BENZYLIC SYSTEMS

KEY WORDS: NMR, Two - Way Shift Reagent, $\text{Pr}(\text{TTA})_3$, benzylic System

Shyama P. Sinha and S. C. Kong

Department of Chemistry, University of Malaya,
Kuala Lumpur, Malaysia.

In our search for new lanthanide shift reagents, we have recently reported¹ the use of tris(acetylacetonato)ytterbium(III), $\text{Yb}(\text{acac})_3$, in producing downfield shifts of PMR signals of benzyl alcohol. During this study, it was noted that the corresponding $\text{Pr}(\text{acac})_3$ failed to produce the expected shifts analogous to those by other $\text{Pr}(\text{III})$ -complexes². In examining a series of acetylacetonate complexes of the lanthanides and an analysis of the data already available in the literature, it was concluded¹ that the ability of a lanthanide complex to act as a shift reagent is strongly dependent on the nature of the ligand in its coordination shell. Hence, we have started exploring complexes of lanthanide ions with different donor atoms that would act as shift reagents.

In this paper we wish to report the remarkable ability of tris-(thenoyltrifluoroacetonato)Praseodymium(III), $\text{Pr}(\text{TTA})_3$, as a shift reagent and, in particular, its pulling-apart effect on aromatic proton signals in benzylic systems. The usual behaviour of $\text{Pr}(\text{III})$ -shift reagents is to shift all peaks upfield, while $\text{Eu}(\text{III})$ -complexes generally shift all peaks downfield. $\text{Pr}(\text{TTA})_3$ is remarkable in the sense that: (a) it produce both upfield and downfield shifts of the ring proton signals in a benzylic

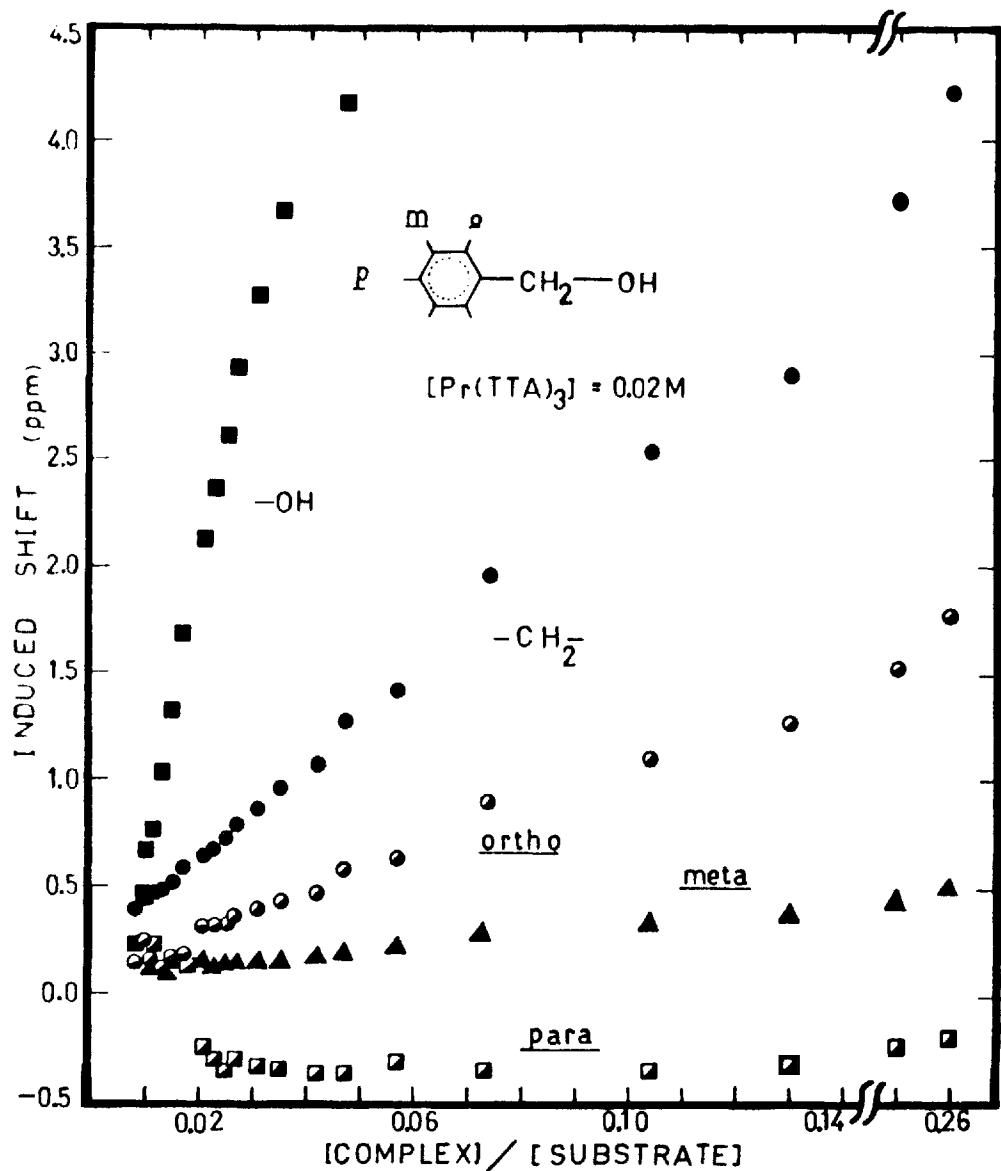


FIGURE 1. Dependence of the Induced Shifts of all Proton Signals in Benzyl Alcohol on the Ratios of Complex : Substrate

system, and (b) a complex: substrate molar ratio of as low as 0.2 produces recognizable shifts.

FIG. 1 shows the typical behaviour of all proton signals in benzyl alcohol for a wide variation in the complex: substrate ratio. In this particular experiment, the concentration of $\text{Pr}(\text{TTA})_3$ was kept constant at 0.02M. We also changed the concentration of the complex and smaller induced shifts were noted with lowering of the concentration of the complex.

It is obvious from FIG. 1 that the hydroxyl proton, CH_2 -protons, ortho and meta proton signals undergo the expected upfield shift, while the para proton signal shifts downfield thus exhibiting a "two-way" shift for the ring protons.

This remarkable behaviour prompted us to examine several other benzylic systems and the effects of $\text{Pr}(\text{TTA})_3$ on dibenzylether, benzylamine, dibenzylamine, and tribenzylamine are shown in FIG. 2. The separation of the ring protons into ortho, meta, and para peaks for benzylamine and dibenzylamine is easily adduced. However, the ring and CH_2 proton signals of dibenzylether and tribenzylamine remain practically unshifted on the addition of $\text{Pr}(\text{TTA})_3$ (FIG. 2). This is rather surprising. Admittedly, there is some steric crowding around the donor nitrogen site of tribenzylamine, but models show that the rotamers of dibenzylether and tribenzylamine have plenty of room left for effective approach of a $\text{Pr}(\text{TTA})_3$ molecule.

Several questions present themselves, the most important ones being: (a) whether the absence of shift is an indication of no complex formation between the shift reagent and the substrate (b) the function of H-atom on the donor sites and (c) why $\text{Pr}(\text{TTA})_3$ acts as a "two-way" shift reagent. It has also been observed in this laboratory that $\text{Pr}(\text{III})$ ion produces a "two-way" shift for the protons of 2,2'-dipyridyl in methanolic solution³.

In order to investigate whether the presence of H-atom on the donor site is a prerequisite for producing shifts, we have studied the shift in a

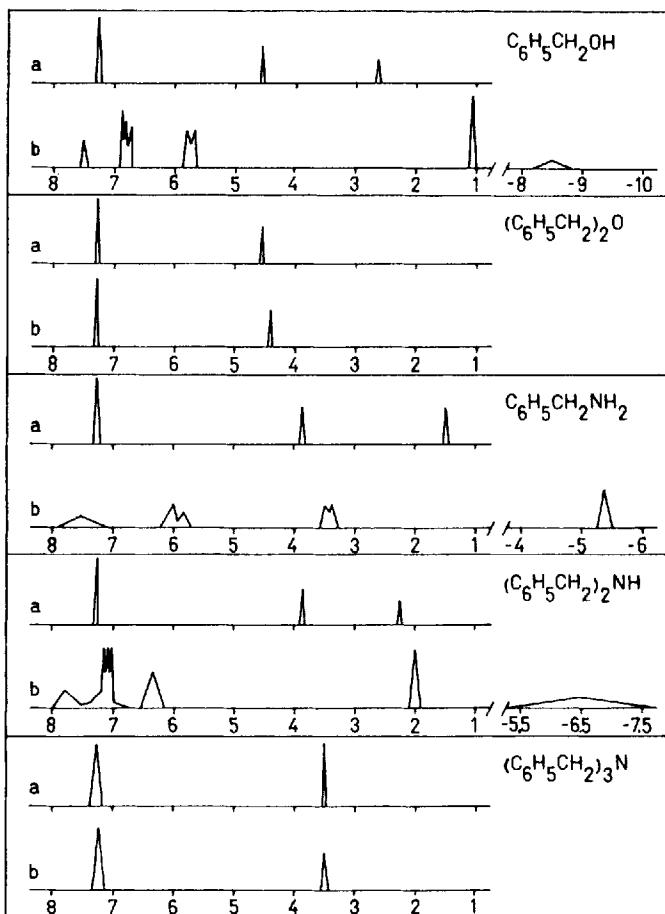


FIGURE 2. The "TWO-WAY" Shift of Benzylic Proton Signals in Several Systems: (a) the normal PMR spectra (b) with added $\text{Pr}(\text{TTA})_3$ (Complex:Substrate Ratio = 0.1 - 0.2)

pseudo-benzylic system i.e., benzophenone ($\text{C}_6\text{H}_5\text{COC}_6\text{H}_5$). Benzophenone produces a complex spectrum between 7 and 9 ppm (relative to TMS) which is simplified and shifted upfield with progressive addition of $\text{Pr}(\text{TTA})_3$. In the case of benzophenone the carbonyl oxygen is the donor atom and the ring protons are exactly the same distance away as in benzyl alcohol or amines. It then seems that there is no real need for the presence of H-atom on the

donor sites. Many ketones and compounds containing halides and pseudo-halides, however, were found⁴ to produce observable shifts with the addition of a shift reagent⁵ i.e. Eu(FOD)₃. It is more than obvious that the ether oxygen in dibenzylether and the tertiary nitrogen in tribenzylamine are better donors than the halogens in say (C₆H₅)₃SnCl representing a system analogous to the benzylic ones.

At this stage one suggestion based on hydrogen bonding between the alcohol or amino protons and one of the oxygen atoms in the shift reagent complex may be put forward. This suggestion although looks very attractive in view of the fact that compounds without a proton on the donor site do not exhibit any shift suffers from the drawback that we have observed shifts of the protons in benzophenone with the same reagent e.g. Pr(TTA)₃.

Pr(TTA)₃ was also found to produce shifts in other organic systems i.e. Adamantan-1-ol and cholesterol. Adamantan-1-ol shows a cluster of lines between 1.40 and 2.20 ppm. On addition of Pr(TTA)₃ the resonances shifted upfield and the resonances due to (2,8,9) and (4,6,10) protons separated very nicely³. Moreover, the cis and trans configurations of the six protons in (4,6,10) position of adamantan-1-ol produced a simplified AB-spectrum. The sequence of shift is of the order (3,5,7)H < trans, cis (4,6,10)H < (2,8,9)H << OH.

All spectra were recorded in CDCl₃ with a Hitachi Perkin-Elmer R-20B NMR Spectrometer at 35°C. We wish to thank Dr. R.D. Green for interesting discussions.

REFERENCES

1. Part I: R.D. Green and S.P. Sinha, *Spectroscopy Letters* 4, 411 (1971).
2. J. Briggs, G.H. Frost, F.A. Hart, G.P. Moss and M.L. Staniforth, *Chem. Comm. (London)* 749 (1970).

3. S.P. Sinha, "Application of Rare Earth Complexes as NMR Shift Reagents in Elucidating the Structure of Organic Compounds" Invited Lecture for the Int. Conf. on Molecular Spectroscopy, Sept. 15 - 19 (1972), Wroclaw, Poland.
4. T.J. Marks, J.S. Kristoff, A. Alich and D.F. Shriver, *J. Organometal. Chem.* 33, C35 (1971).
5. R.E. Rondeau and R.E. Sievers, *J. Amer. Chem. Soc.* 93, 1522 (1971).

Received April 30, 1973

Accepted June 6, 1973